THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE

and so on, would have to be solved. There is no reason why these problems cannot be solved, and maybe they will be overcome and human beings will survive intact, ready for the physical hazards of frontier life on a new planet. Or maybe, having left Earth behind, future humans will have adapted so well to their space environment that they will prefer to remain in nomadic colonies in permanent space flight.

Proposals for large-scale rockets where people will spend several generations before arrival at their destination raise serious ethical problems. Future unborn generations will be condemned to a restricted life with all the hazards and uncertainties of interstellar travel. But if we consider in-flight colonies which retain a system of conscious communication with Earth, or were completely self-contained, which succeeding generations would see as home, the above objections could be dispelled. Moreover, the voyagers might have no alternative once it is known that their sun is about to become a red giant. It might then be seen that space colonization is not like European colonization of the nineteenth century, where a large degree of cultural continuity survived the journey. Instead, it might be speculated that the eventual colonization of space, in which the colonization of Mars is the first step, is more like the movement of organic life from the sea to land. This would require a revision of our ideas of colonization and a maturity of outlook which was not attained by the Europeans of the nineteenth and twentieth centuries.

 

Rockets or microwaves?

There is a view which holds that space exploration and colonization are unrealistic and that we should discount analogies with colonial expansion during Earth’s history, but rather concentrate our efforts on electronic communication and data exchange. Why build rockets and engage in high risk human expeditions when we can explore the galaxy with probes and electronic equipment? The era of space travel began at the height of the Cold War when rival political powers sought to demonstrate their superiority. Some thirty years after the first Moon landing, the main justification for space exploration was still in terms of terrestrial political objectives, such as a demonstration of US technological superiority over the former Soviet Union and the ultimate domination of the ‘free market’. Is what Kennedy and others saw as the first step in the conquest of space to be the last great scientific technological achievement? Is it time to put an end to notions of conquest and colonization inspired by terrestrial political rivalry?

The opportunity to explore outer space may soon pass. Some estimates suggest that we only have about thirty years left before a combination of factors, including space debris, electromagnetic pollution and energy limitations prevent further attempts at space exploration (Gott, 1993). Space exploration is expensive and projects for manned expeditions to far-off planets are likely to be curtailed in a cost-conscious society. Nevertheless, it is sometimes argued that

 

 

119

 

 

 

 

 

 

 

expenditure on space travel could be a good alternative to the arms race during the current lull in hostilities between the superpowers. There is certainly a need for public involvement in large-scale non-aggressive projects. There are, of course, other contenders for these resources. Massive levels of poverty, hunger and disease, dogmatic fundamentalism and ethnic rivalries, threaten world peace and place burdens on human skills and resources. Yet proposals for the redirection of resources to much needed human welfare projects are, at present, an invitation to commit political suicide. Space explorations could present a challenge to a culture which is tired and lacking a sense of direction. But the tiredness of our culture – evidenced by a toleration of bankrupt political authority and economic theory – may only be one explanation of society’s unwillingness to resource large-scale projects for manned exploration of space.

It may be that we are seeing a decline of the nineteenth-century belief that travel and great expeditions add to the wealth of human knowledge. Scientific legends, such as Darwin and Wallace, travelled to the colonies in search of scientific truth while artists and writers, such as Gauguin and Conrad, sought inspiration in travel. Perhaps, as we enter the twenty-first century, the link between travel and knowledge will finally be severed. Why did scientists and artists of the nineteenth century travel and mount expeditions to remote parts of the Earth? One answer is to obtain information. But once the necessary infrastructure has been installed, information can be transported anywhere, at little cost, at the speed of light. One does not need to appeal to science fiction to predict that the scope and nature of information technology will contribute to a transformation of our attitudes to knowledge throughout the twenty-first century. There are many who proclaim that the simulation of experience by cyberspace technology could eliminate many reasons for being physically present at a particular place or event. For example, with a telecommunication presence on Mars supplied by a robot probe, covering various regions of the planet, it should be possible to provide a virtual reality experience of Mars to homes and schools all over the Earth without any of the attendant risks associated with costly space voyages. Is this the future of space colonization? Dominance in information technology, it might be argued, will replace competition for the old-style notion of colonial dominance which required the physical presence of the ruling civilization.

The promise of the information technology revolution has placed limits on the notion of space travel. Notwithstanding its ring of satellites, the information technology culture is primarily Earthbound. In fact, the proliferation of satellites required by information technology may place limits on the feasibility of space travel. NASA has predicted that if the amount of space debris exceeds 150,000 fragments of one centimetre or larger, it would render space flight impossible. Each satellite launch increases space debris, and to achieve high speed access to the Internet will require several hundred more satellites (Ward, 1997: 49). Moreover, the growth of information technology has also removed one of the incentives to travel; we have no need to travel in order to know. Some have

 

 

120

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

Leave a Reply